Efficient Solutions to Factored MDPs with Imprecise Transition Probabilities
نویسندگان
چکیده
When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MDP transition models from an expert or estimation from data, or non-stationary transition distributions arising from insufficient state knowledge. In the interest of obtaining the most robust policy under transition uncertainty, the Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs) has been introduced to model such scenarios. Unfortunately, while various solution algorithms exist for MDP-IPs, they often require external calls to optimization routines and thus can be extremely time-consuming in practice. To address this deficiency, we introduce the factored MDP-IP and propose efficient dynamic programming methods to exploit its structure. Noting that the key computational bottleneck in the solution of factored MDP-IPs is the need to repeatedly solve nonlinear constrained optimization problems, we show how to target approximation techniques to drastically reduce the computational overhead of the nonlinear solver while producing bounded, approximately optimal solutions. Our results show up to two orders of magnitude speedup in comparison to traditional “flat” dynamic programming approaches and up to an order of magnitude speedup over the extension of factored MDP approximate value iteration techniques to MDP-IPs while producing the lowest error of any approximation algorithm evaluated.
منابع مشابه
Using mathematical programming to solve Factored Markov Decision Processes with Imprecise Probabilities
This paper investigates Factored Markov Decision Processes with Imprecise Probabilities (MDPIPs); that is, Factored Markov Decision Processes (MDPs) where transition probabilities are imprecisely specified. We derive efficient approximate solutions for Factored MDPIPs based on mathematical programming. To do this, we extend previous linear programming approaches for linear approximations in Fac...
متن کاملFactored Markov Decision Processes with Imprecise Probabilities: a multilinear solution
There are efficient solutions to planning problems modeled as a Markov Decision Process (MDP) envolving a reasonable number of states. However, known extensions of MDP are more suited to represent practical and more interesting applications, such as: (i) an MDP where states are represented by state variables, called a factored MDP; (ii) an MDP where probabilities are not completely known, calle...
متن کاملFactored Markov decision processes with Imprecise Transition Probabilities
This paper presents a short survey of the research we have carried out on planning under uncertainty where we consider different forms of imprecision on the probability transition functions. Our main results are on efficient solutions for Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs), a generalization of a Markov Decision Process where the imprecise probabilities are...
متن کاملModel Reduction Techniques for Computing ApproximatelyOptimal Solutions for Markov Decision
We present a method for solving implicit (factored) Markov decision processes (MDPs) with very large state spaces. We introduce a property of state space partitions which we call-homogeneity. Intuitively, an-homogeneous partition groups together states that behave approximately the same under all or some subset of policies. Borrowing from recent work on model minimization in computer-aided soft...
متن کاملRepresenting and Solving Factored Markov Decision Processes with Imprecise Probabilities
This paper investigates Factored Markov Decision Processes with Imprecise Probabilities; that is, Markov Decision Processes where transition probabilities are imprecisely specified, and where their specification does not deal directly with states, but rather with factored representations of states. We first define a Factored MDPIP, based on a multilinear formulation for MDPIPs; then we propose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artif. Intell.
دوره 175 شماره
صفحات -
تاریخ انتشار 2009